(Bottom View) # EHI C € ĽK #### ■ Features - Quarter-brick(2.28" x 1.45" x 0.5") with industrial standard pin-out - Compliance with railway standard EN50155 - · 12:1(14~160Vdc) wide input range - Wide operating temperature range -40 ~ +90°C - · No minimum load required - Full encapsulated - Protections: Short circuit (Continuous) / Overload / Over temperature / Over voltage / Input under voltage lockout - 3KVAC I/O isolation - · Remote ON/OFF control and remote sense - Triming output(±10%) - · 3 years warranty # Railway # Applications - · Bus, tram, metro or railway system - Telecom/datacom system - · Wireless network - Industrial control facility - Instrument - Analyzer - Highly vibrating, heavily dusty, exteremely low or high temperature harsh environment #### **■** GTIN CODE MW Search: https://www.meanwell.com/serviceGTIN.aspx # Description RQB150W12 series is 150W module type DC-DC reliable railway with quarter brick package. It features international standard pins, a high efficiency up to 88%, wide working temperature range -40~+90°C, 3KVAC I/P-O/P isolation voltage, meet EN50155 with external circuits, continuous-mode short circuit protection, etc. The models input for 14~160VDC 12:1 wide input range, and various output voltage, 12V/24V/48V/54V for single output, which are suitable for railway, trams, buses and also can be used in the harsh environment with high vibration, high dust, extremely low or high temperature, etc. ## ■ Model Encoding | MODEL SELECTION TABLE | | | | | | | | | | |-----------------------|--|---------------|-----------|---------|---------|----------------------|-----------------------|--|--| | | I | ОИТ | PUT | | | | | | | | ORDER NO. | INPUT VOLTAGE | INPUT CURRENT | | OUTPUT | OUTPUT | EFFICIENCY
(Typ.) | CAPACITOR LOAD (MAX.) | | | | | (RANGE) | NO LOAD | FULL LOAD | VOLTAGE | CURRENT | (-3p-) | (IVIAA.) | | | | RQB150W12-110S12 | Nominal
24V,36V,48V,72V,96V,110V
(14 ~ 160V) | 10mA | 1.55A | 12V | 12.5A | 88% | 5000µF | | | | RQB150W12-110S24 | | 10mA | 1.55A | 24V | 6.25A | 87.5% | 2000µF | | | | RQB150W12-110S48 | | 10mA | 1.55A | 48V | 3.125A | 87.5% | 1000µF | | | | RQB150W12-110S54 | | 10mA | 1.55A | 54V | 2.778A | 88% | 1000µF | | | | SPECIFICAT | TION | | | | | | | | | | | |-----------------|---|--|---|--|--|--|--|--|--|--|--| | | VOLTAGE RANGE | 14 ~ 160Vdc | | | | | | | | | | | | SURGE VOLTAGE (0.1s max.) | 200Vdc | | | | | | | | | | | INPUT | FILTER | Pi type | | | | | | | | | | | | PROTECTION | 15A/250Vac time delay fus | se | | | | | | | | | | | SETUP TIME | 300ms max. (100% Load at Nominal Vin) | | | | | | | | | | | | VOLTAGE ACCURACY | ±1.0% | | , | | | | | | | | | | RATED POWER | ± 1.0 % | | | | | | | | | | | | - | 12V/24V=240mVp-p, 48V/54V=480mVp-p | | | | | | | | | | | | LINE REGULATION Note.3 | | | | | | | | | | | | OUTPUT | LOAD REGULATION Note.4 | | | | | | | | | | | | | SWITCHING FREQUENCY (Typ.) | | | | | | | | | | | | | EXTERNAL TRIM ADJ. RANGE (Typ.) | | | | | | | | | | | | | HOLD UP TIME | Please refer to page 5 Hold up time | | | | | | | | | | | | SHORT CIRCUIT | Protection type : Continuo | <u> </u> | tio rocovory | | | | | | | | | | SHORT CIRCUIT | 7. | • | lic recovery | | | | | | | | | | OVERLOAD | 120 ~ 200% rated output | • | | | | | | | | | | | | 7. | | ally after fault condition is re | emoved | | | | | | | | PROTECTION | OVER VOLTAGE | 110 ~ 150% rated output | | | | | | | | | | | | OVED TEMPED 47:177 | Protection type : Shutdown | , , | odenskie i 6 c ii | allal a | | | | | | | | | OVER TEMPERATURE | | | utomatically after fault con | aition is remo | ovea | | | | | | | | UNDER VOLTAGE | Start-up voltage | 13.2V | | | | | | | | | | | LOCKOUT | Shutdown voltage | 12V | | | | | | | | | | FUNCTION | REMOTE CONTROL | Power OFF: P. C ~ -Vin > 3 | | | | | | | | | | | | COOLING | Power OFF: R.C ~ -Vin < 1.2Vdc or short Natural convection | | | | | | | | | | | | WORKING TEMP. | | rating Curv | a"\ | | | | | | | | | | CASE TEMPERATURE | -40 ~ +90°C (Refer to "Derating Curve") | | | | | | | | | | | | WORKING HUMIDITY | +115°C max. | | | | | | | | | | | ENV//DONMENT | | 5% ~ 90% RH non-condensing | | | | | | | | | | | ENVIRONMENT | STORAGE TEMP., HUMIDITY TEMP. COEFFICIENT | -55 ~ +125°C, 10 ~ 95% RH non-condensing | | | | | | | | | | | | SOLDERING TEMPERATURE | 0.05% /°C (0 ~ 65°C) | | | | | | | | | | | | VIBRATION | 1.5mm from case of 3 ~ 5sec./260°C max. | | | | | | | | | | | | - | EN61373 | | | | | | | | | | | | OPERATING ALTITUDE | 4000 meters | TO 000/00 | 44 | | | | | | | | | | SAFETY STANDARDS | LVD IEC62368-1, EAC TP TC 020/2011 approved I/P-O/P:3KVAC | | | | | | | | | | | | ISOLATION RESISTANCE | | | | | | | | | | | | | | I/P-O/P:1000M Ohms / 500VDC / 25°C / 70% RH non-condensing | | | | | | | | | | | | ISOLATION CAPACITANCE (Typ.) | 3000pF | | Cton doud | | Cantil aval / Nata | | | | | | | | EMO EMICOION | Parameter | | Standard | | est Level / Note | | | | | | | | EMC EMISSION | Conducted | | BS EN/EN55032 | | Class A/B with external components | | | | | | | | | Radiated | | BS EN/EN55032 | | Class A/B with external components | | | | | | | SAFETY & | | Parameter | | Standard | | est Level / Note | | | | | | | EMC
(Note.6) | | ESD | | BS EN/EN61000-4-2 | | evel 3, ±6KV contact | | | | | | | (Note.0) | | Radiated Susceptibility | | BS EN/EN61000-4-3 | | evel 3, 10V/m | | | | | | | | EMC IMMUNITY | EFT/Burest(Note.5) | | BS EN/EN61000-4-4 | | evel 3, On power input port, ±2KV
external input capacitor required | | | | | | | | EWC IMMONITY | Surge(Note.5) | | BS EN/EN61000-4-5 | | evel 3, On power input port, ±2KV | | | | | | | | | Conducted | | BS EN/EN61000-4-6 | | evel 3, 10V/m(r.m.s.) | | | | | | | | | Magnetic Field BS EN/EN61000-4-8 Level 3, 10A/m | | | | | | | | | | | | RAILWAY STANDARD | | 373 for shoo | k & vibration, EN50121-3-2 | | | | | | | | | | MTBF | 185Khrs MIL-HDBK-217 | | | | | | | | | | | | DIMENSION (L*W*H) | 57.9*36.8*12.7mm (2.28* | 1.45*0.5 in | ch) | | | | | | | | | OTHERS | CASE MATERIAL | Aluminum base plate with | | · | | | | | | | | | | PACKING | 75g ; 11pcs/per tube, 132 | • | | | | | | | | | | NOTE | | sured at 20MHz by using ured from low line to high ured from 0% to 100% ra required 100µF/200V x 3 st be re-confirm that it still component power supplies | a 12" twiste
line at rated
ted load.
I meet EMC
s."(as availa | ed pair terminated with a dod load. Codirectives. For guidance able on http://www.meanw | 0.1μf & 47μf
on how to p
vell.com) | erform these EMC tests, please | | | | | | #### **■** External Output Trimming In order to trim the voltage up or down, one needs to connect the trim resistor either between the trim pin and -Vout for trim_up or between trim pin and +Vout for trim_down. The output voltage trim range is -10% to +10%. This is shown in Figures 1 and 2: Figure 1. Trim_up Voltage Setup Figure 2. Trim_down Voltage Setup #### 1. The value of Rtrim_up defined as: $$A = \frac{V_{ref}}{V_{o'}-V_{ref}} \times R1$$ $$Rtrim_up = \frac{AR2}{R2-A} - R3$$ For example, to trim_up the output voltage of 12V module (RQB150W12-110S12) by 10% to 13.2V, Rtrim_up is calculated as follows: $$V_{0}' = 13.2V$$ $$R3 = 68K\Omega$$ $$A = \frac{V_{ref}}{V_{o'}-V_{ref}} \times R1$$ $$= \frac{2.5}{13.2 - 2.5} \times 38 = 8.878$$ $$Rtrim_up = \frac{AR2}{R2-A} - R3$$ $$= \frac{8.878 \times 10}{10 - 8.878} - 68$$ = 11.126KΩ Table 1 - Trim_up and Trim_down Resistor Values | Model Number | Vo,nom
(V) | Vref
(V) | R1
(KΩ) | R2
(KΩ) | R3
(KΩ) | |------------------|---------------|-------------|------------|------------|------------| | RQB150W12-110S12 | 12 | 2.5 | 38 | 10 | 68 | | RQB150W12-110S24 | 24 | 2.5 | 86 | 10 | 76.8 | | RQB150W12-110S48 | 48 | 2.5 | 182 | 10 | 80.6 | | RQB150W12-110S54 | 54 | 2.5 | 206.1 | 10 | 82 | #### Note: - 1. Rtrim_up, Rtrim_down is mean trim resistor, please check the formula. - 2.A & B: user define parameter, no actual meanings. - 3.Vo' is target trim voltage. - 4. Value for R1, R2, R3 and Vref refer to above table. #### 2. The value of Rtrim_down defined as: $$A = \frac{V_0' - V_{ref}}{V_{ref}} \times R2$$ $$Rtrim_down = \frac{AR1}{R1-A} - R3$$ For example, to trim_down the output voltage of 12V module (RQB150W12-110S12) by 10% to 10.8V, Rtrim_down is calculated as follows: Vo,nom = 12V $$V_{0}' = 10.8V$$ $$V_{ref} = 2.5V$$ R1 = $$38 \text{ K}\Omega$$ $$R2 = 10 K\Omega$$ R3 = $$68 \text{ K}\Omega$$ $$A = \frac{Vo'-V_{ref}}{V_{ref}} \times R2$$ $$= \frac{10.8 - 2.5}{2.5} \times 10 = 3.32 \times 10 = 33.2$$ Rtrim_down = $$\frac{AR1}{R1-A} - R3$$ = $\frac{33.2 \times 38}{38 - 33.2} - 68$ = 194.83K Ω ### ■ Hold-up Time During the transition of different power source, the electric power on the train become unstable in a short time. Such as a sudden voltage drop or a short-term power failure. Under this situation, hold-up time circuit is suitable for this situation. As Figure 3 shows, hold-up time circuit comprises R1, D1 and Chold. The capacity of Chold decides the hold-up time during interruption of input power. And Figure 4 shows the table for Chold with different input voltage. For example, if input voltage is 110V, and output load is full load. The Chold need 470µF During start up, R1 endures a high pulse power, and should be selected carefully. The power is related to Vbus and Chold. We recommend to use 25Ω/10W resistor. Table 2 - Cap_hold table (Hold up time) | the section of se | | | | | | | | | |--|--------|--------|--------|--------|--------|--|--|--| | Nominal Vin | 24V | 48V | 72V | 96V | 110V | | | | | 10ms(S2) | 1800µF | 1800µF | 1800µF | 600µF | 500µF | | | | | 20ms(S3) | 3600µF | 3600µF | 3600µF | 1200µF | 820µF | | | | | 30ms(C2) | 4800µF | 4800µF | 4800µF | 1800µF | 1200µF | | | | Figure 3 Hold-Up Time Circuit #### ■ Derating Curve Note 1. The de-rating curve was measured at 110Vdc input with natural convection. Note 2. In order to meet higher "derating curve" requirements, the heat dissipation can be increased by increasing the air flow (LFM) to meet the requirements. The recommended thermal resistance formula is as follows: The derating curve of the converter's output load with the ambient temperature. Above derating curve shows the operating ambient temperature range is from -40°C to 100°C. The output load should derating when ambient temperature over -25°C. And the environmental convection is below 20LFM. When the ambient temperature over -25°C, RQB150W12 should derating to certain load. For example, if the ambient temperature is about 45°C, the RQB150W12 output load should derating to 50% of full load. The thermal resistor can be calculated by below formula. Take RQB150W12 as an example, which operating at nominal voltage and output load at full load. And the power dissipation (Pd) Pd = Pin - Po = $$\frac{\text{Po}(1-\text{eff})}{\text{eff}}$$ Pd = 12*12.5*(1-0.87)/0.87 = 22.4W So, the power dissipation (Pd) is about 22.4W at ambient temperature 0°C. The thermal resistance (Rca) from case to ambience is 5.75(°C/W). The maximum case temperature rise is $\Delta T = Pd * Rca = 22.4W * 5.75 (°C/W) = 128.8°C$ The maximum case temperature is Ta = Tc - ΔT = 105°C -128.8°C = -23.8°C So, the Ta for full load is around -25°C #### **Power Derating PCB Layout Suggestion** Power module can operate in variety of thermal environments. However, sufficient cooling should be provided to ensure the reliable operation of the unit. Heat can be removed by conduction, convection, and radiation to the surrounding environment. Figure 4 is the PCB layout, which to measure RQB150W12 thermal performed, the dimension is 137 * 88 * 1.6mm, 2 OZ. There copper can help RQB150W12 to conduct heat through the body to the PCB. Figure 4 ## ■ Mechanical Specification - All dimensions in mm(inch) - Tolerance: $x.x\pm0.5$ mm ($x.x\pm0.02$ ") $x.xx \pm 0.25mm(x.xx \pm 0.01")$ - Pin size is:1.x \pm 0.1mm (0.04" \pm 0.005") # ■ Plug Assignment | Pin-Out | | | | | | | | | | |---------|---------------|---------|--------|--|--|--|--|--|--| | Pin No. | Output | Pin No. | Output | | | | | | | | 1 | +Vin | 6 | -Vout | | | | | | | | 2 | UVLO | 7 | -S | | | | | | | | 3 | Remote ON/OFF | 8 | Trim | | | | | | | | 4 | Vbus | 9 | +S | | | | | | | | 5 | -Vin | 10 | +Vout | | | | | | | # ■ EMC Suggestion Circuit EMI Test standard: BS EN/EN55032 Class A with external circuit. Below figure shows the suggestion circuit for Class A. (Test Condition: Input Voltage: 110Vdc, Output Load: Full Load) 150W Quarter Brick 14~160Vdc wide Input Railway DC-DC Converter | Model No. | BS EN/EN55032 Class A | | | | | | | | | | |------------------|-----------------------|--------------|--------|-------------|-----------------|--------------|--|--|--|--| | Model No. | C1,C4 | C2,C3,C5,C6 | L1 | CY1,CY2 | CY3,CY4,CY5,CY6 | C7 | | | | | | RQB150W12-110S12 | 100µF/200V | | | | 4000 5/0/0/4 | | | | | | | RQB150W12-110S24 | | 0.00 5/0501/ | 0.0.11 | 4000 5/5/0/ | 1200pF/3KV*4 | 4.7.5/400/40 | | | | | | RQB150W12-110S48 | 220µF/200V | 0.68µF/250V | 2.0mH | 1000pF/5KV | 4000 5/01/1/45 | 4.7μF/100V*6 | | | | | | RQB150W12-110S54 | | | | | 1200pF/3KV*5 | | | | | | EMI Test standard: BS EN/EN55032 Class B with external circuit. Below figure shows the suggestion circuit for Class B. (Test Condition: Input Voltage: 110Vdc, Output Load: Full Load) | Model No. | BS EN/EN55032 Class B | | | | | | | | | | | |------------------|-----------------------|------------------------|-------|-------|--------|--------|-----------------|-----------|--------------|--|--| | Model No. | C1,C2,C7 | C3,C4,C5,C6,C8,C9 | L1,L2 | L3,L4 | CY1 | CY2 | CY3,CY4,CY5,CY6 | CY7,CY8 | C10 | | | | RQB150W12-110S12 | | | | | | | | | | | | | RQB150W12-110S24 | 100µF/200V | 100µF/200V 0.68µF/250V | 2.0mH | 4.7µH | 2200pF | 1000pF | 2200pF/3KV*4 | 470pF/5KV | 4.7μF/100V*6 | | | | RQB150W12-110S48 | | 0.00μΓ/2000 | | | / 5KV | /5KV | | | | | | | RQB150W12-110S54 | | | | | | | | | | | | # ■ Packing | Standard Tube Packing | MPQ
Per Tube
(PCS) | One Tube
G.W. | Max. Q'TY/
Carton(PCS) | One Carton
G.W. | |--|--------------------------|------------------|---------------------------|--------------------| | Unit : mm Tube Nails Tube pattern Tube pattern CARTON L545 x W145 x H220 | 11 | 955g | 132 | 12.5Kg | # **■** Installation Manual Please refer to : http://www.meanwell.com/manual.html