

Single high speed RS485 isolation transceiver module(enhanced)

FEATURES

- Integrated high efficient isolated DC-DC converter
- High baud rate of up to 500kbps
- Two-port isolation test voltage(3.0kVDC)
- Operating ambient temperature range: -40 $^\circ$ C to +85 $^\circ$ C
- The bus supports maximum 256 nodes
- Set isolation and ESD bus protection in one
- UL60950, EN60950 approval

The main function of the TD301D485H-E / TD501D485H-E series is to convert a logic level signal into isolated RS485 differential level signals. The special integrated IC technology of the RS485 transceiver achieves isolation between the power supply and the signal lines isolation, does RS485 communication and protects the bus all in one and the same module. The product's isolated power supply withstands a test voltage of up to 3000VDC. Also, they can easily be embedded in the user's end equipment, to achieve fully functional RS485 network connections.

Selection Gu	uide					
Certification	Part No.	Power input (VDC)	Baud rate (kbps)	Static Current (mA)	Max. Operating Current (mA)	Number of Nodes
LIL /CF	TD301D485H-E	3.15-3.45	500	35	130	256
UL/CE	TD501D485H-E	4.75-5.25	500	35	130	256

Absolute Limits						
Item	Operating Conditions	Min.	Тур.	Max.	Unit	
+0\/-H(1\)	3.3V series	-0.7		5	\/DC	
Input Surge Voltage (1sec.max.)	5.0V series	-0.7		7	VDC	
Pin Welding Resistance Temperature	Soldering time 10s max.			300	$^{\circ}$	

3.3V Input S	pecificatio	ns					
Item		Symbol	Min.	Тур.	Max.	Unit	
Power Supply Input Voltage		VCC	3.15	3.3	3.45		
TVD Logic Lovel	High-level	Vih	0.7V cc	3.3	Vcc+0.5		
TXD Logic Level Low-level	Low-level	ViL	0	-	0.8	VDC	
RXD Logic Level	High-level	Vон	Vcc-0.4	Vcc-0.2	_	_	
	Low-level	Vol	0	0.2	0.4		
TXD Drive Current		lτ		_	2		
CON Drive Current		Icon		-	5	mA	
RXD Output Current		l _R	_	_	10		
Serial Interface		Compatible with + 3.3 V UART interface	Compatible with + 3.3 V UART interface only				

5.0V Input S	pecification	s				
Item		Symbol	Min.	Тур.	Max.	Unit
Power Supply Input Voltage		VCC	4.75	5	5.25	
TXD Logic Level High-level Low-level		Vih	0.7V cc	5	Vcc+0.5	VDC
		VIL	0		0.8	
RXD Logic Level	High-level	Vон	Vcc-0.4	Vcc-0.2	_	
	Low-level	Vol	0	0.2	0.4	
TXD Drive Current		lī			2	
CON Drive Current		Icon			5	mA
RXD Output Current		l _R			10	
Serial Interface		Compatible with + 5 V UART interface only				

Transm	Transmission Specifications					
Item		Symbol	Min.	Тур.	Max.	Unit
Data	TXD Transmitter Delay	tτ	_		110	
Delay	RXD Receiver Delay	tR	_		110	ns
Rise delay and drop delay of bus output					100	
Handoff D	elay		_		30	us

Output Specifications					
Item	Symbol	Min.	Тур.	Max.	Unit
Difference Level	$V_{\text{diff(d)}}$, $R_L=54 \Omega$	1.5	2	3	VDC
Difference load resistance		54	60	_	Ω
Difference Input Impedance	-7V≪V _{CM} ≪+12V	96		_	k Ω
Built-in pull-down resistor			120	_	K 25
Bus Interface Protection			ESD pro	otection	

Inp	ut TXD	Α	Output B	RXD	
	TXD	Α	В	DXD	
	,			IND	
	I	1	0	1	
	0	0	1	1	
	VA-VB	RXD			
	>-10mV		1		
	≤-200mV	0			
-	-200mV <va-vb<-10mv< td=""><td></td><td>Undefined state</td><td></td></va-vb<-10mv<>		Undefined state		
		V _A -V _B ≥-10mV ≤-200mV -200mV <v<sub>A-V_B<-10mV</v<sub>	$V_{A}-V_{B}$ $\geq -10mV$ $\leq -200mV$ $-200mV < V_{A}-V_{B} < -10mV$	VA-VB RXD ≥-10mV 1 ≤-200mV 0 -200mV <va-vb<-10mv< td=""> Undefined state</va-vb<-10mv<>	

General Specifications		
Item	Operating Conditions	Value
Isolation Test	Electric Strength Test for 1 min., leakage current < 1 mA	3000VDC
Insulation Resistance	At 500VDC	1000MΩ (Input-output)
Operating Temperature		-40°C to +85°C
Transportation and Storage Temperature		-50°C to +105°C
Operating Humidity	Non-condensing	5% - 95%
Safety Standard		EN60950/UL60950
Safety Certification		L1100730/0L00730
Safety Class		CLASS III

Physical Specifications	
Dimensions	DIP10
Weight	4g(Typ.)
Cooling Method	Free air convection

Electro	Electromagnetic Compatibility (EMC)				
Emissions	CE	CISPR32/EN55032 CLASS B (see Fig. 3)			
	ESD	IEC/EN 61000-4-2 Contact ±4kV /Air ±8kV (without external components, A, B port)	Perf. Criteria B		
lana man um ida e	EFT	IEC/EN 61000-4-4 ±2kV (without external components, A, B port)	Perf. Criteria B		
Immunity	Surge	IEC/EN 61000-4-5 ±2kV (line to ground)(without external components, A, B port)	Perf. Criteria B		
	CS	IEC/EN 61000-4-6 3Vr.m.s (without external components)	Perf. Criteria A		

Application Precautions

- 1. Carefully read and follow the instructions before use; contact our technical support if you have any question;
- 2. Do not use the product in hazardous areas;
- 3. Use only DC power supply source for this product. 220V AC power supply is prohibited;
- 4. It is strictly forbidden to disassemble the product privately in order to avoid product failure or malfunction.
- 5. Hot-swap is not supported.
- 6. If the external input of TXD is insufficient, the pull-up resistor should be added according to the situation.

After-sales service

- Factory inspection and quality control are strictly enforced before shipping any product; please contact your local representative or our technical support if you experience any abnormal operation or possible failure of the module;
- 2. The products have a 3-year warranty period, from the date of shipment. The product will be repaired or exchanged free of charge within the warranty period for any quality problem that occurs under normal use.

Applied circuit

Refer to the RS485 Isolated Industrial Bus Interface Module Application Manual.

Design Reference

1. Typical application circuit

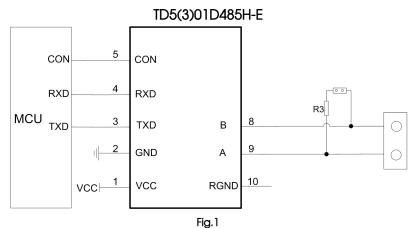


Figure 1 shows a typical connection circuit for the isolated transceiver module TD301D485H-E and TD501D485H-E. The TD501D485H-E module's power supply must be 5V and match the module's TXD, RXD and CON pin interface level of 5V (not supporting any 3.3V system levels). Accordingly, TD301D485H-E module's power supply must be 3.3V and match the module's TXD, RXD and CON pin interface level of 3.3V (not supporting any 5V system levels).

2. Recommended port protection circuit

TD5(3)01D485H-E

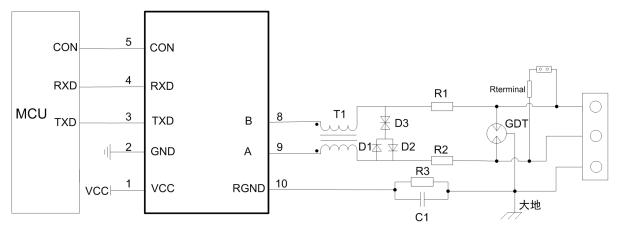
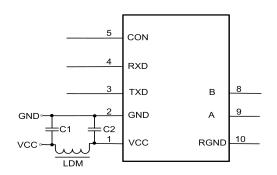


Fig.2

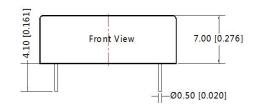

Note: Ground shield of twisted wire pair reliably.

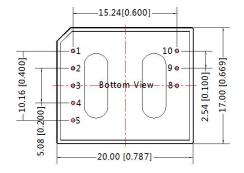
Recommended components and values:

Component	Recommended part, value	Component	Recommended part, value
R3	1M Ω	R1、R2	2.7 ^Ω /2W
C1	1nF, 2kV	D1、D2	1N4007
TI	ACM2520-301-2P	D3	SMBJ8.5CA
GDT	B3D090L	Rterminal	120 Ω

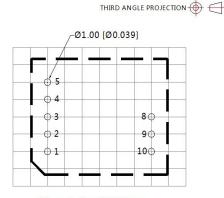
As the modules internal A / B lines come with its own ESD protection, which generally satisfy most application environments without the need for additional ESD protection devices, as shown in the typical circuit in Figure 1. For harsh and noisy application environments such as motors, high voltage/current switches, lightning and similar however, we recommended that the user protects the module's A / B lines with additional measures and external components such as TVS tube, common mode inductors, Gas discharge tube, shielded twisted pair of wires with the same single network Earth point. Figure 2 shows our recommended circuit diagram for such type of applications with components and values given in the table above. This recommendation is for reference only and may have to be adapted accordingly with appropriate component values in order to match the actual situation and application.

Component	Recommended part, value
C1, C2	1uF/16V
LDM	CD43-12uH


Fig.3


3. Precautions

- 1) TD501D485H-E is for 5V TTL level only (not compatible with 3.3V); TD301D485H-E is for 3.3V TTL level only (not compatible with 5V).
- 2) Pin6 and Pin7 are not drawn. Please leave pin 10 open if unused.
- 3) We recommend using a shielded twisted pair of wires for the Data transmission line and using same single point earth connection for each of the networks.
- 4) From the truth table characteristics, it can be derived that the isolated RS-485 transceiver module's CON pin is low to send data and high when receiving data. Note that the general 485 transceiver chip control level is exactly the opposite, therefore, if the customer desires to change the level to the ordinary 485 transceiver chip control level, we recommend using a transistor circuit between the MCU and the CON feed to reverse this signal.
- 5) Reference the truth table characteristics: When the A / B line differential voltage of the series of embedded isolated RS-485 transceiver module is \geq -10mV, the modules receiving level is high and when the A / B line differential voltage is \leq -200mV the modules receiving level is low; the modules receiving level is undefined when the A / B line differential voltage is greater than -200mV but less than -10mV, so the design is to ensure that the module will not be receiving this state. Depending on the actual situation, it is up to the user of the RS-485 network design or application to decide whether to add a 120 Ω termination resistor. Avoiding data communication errors: Regardless if the RS-485 network is static or dynamic, it is essential to avoid that the differential voltage of A / B line ever comes between -200mV and -10mV.
- 4. For additional information, please refer to our application note on www.mornsun-power.com


Dimensions and Recommended Layout

Note: Unit: mm[inch]

Pin section tolerance: ±0.10[±0.004] General tolerance: ±0.25[±0.010]

Note: Grid 2.54*2.54mm

Pin-Out		
Pin	Mark	Function
1	VCC	Input Power
2	GND	GND
3	TXD	TD_D485H Send Pin
4	RXD	TD_D485H Receiving Pin
5	CON	Send&Receiving Control Pin
8	В	TD_D485H BPin
9	Α	TD_D485H APin
10	RGND	Isolation Power Output RGND

Notes:

- 1. For additional information on Product Packaging please refer to www.mornsun-power.com. The Packaging bag number: 58240010;
- 2. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated output load;
- 3. All index testing methods in this datasheet are based on company corporate standards;
- 4. The above are the performance indicators of the product models listed in this datasheet. Some indicators of non-standard models will exceed the above requirements. For details, please contact our technical staff;
- 5. We can provide product customization service;
- 6. Products are related to laws and regulations: see "Features" and "EMC";
- 7. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

MORNSUN Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Luogang District, Guangzhou, P. R. China Tel: 86-20-38601850 Fax: 86-20-38601272 E-mail: sales@mornsun.cn