

PULS

Y-Series

Mosfet Redundancy Module

- For N+1 and 1+1 Redundant Systems
- Dual Input with Single Output
- Only 60mV Voltage Drop at 10A Output Current
- Only 0.6W Loss at 10A
- 160% (32.5A) Peak Load Capability
- Reverse Input Polarity Protection
- Full Power Between -40°C and +70°C
- Width only 32mm
- Rugged Metal Housing
- Easy Wiring: Distribution Terminal for Negative Pole Included

GENERAL DESCRIPTION

The YR20.242 is a redundancy module for building redundant power supply systems. It is equipped with two input channels and one output. The two inputs are decoupled by MOSFET technology.

In addition to the YR20.242, the YR20.246 is available which is featured with an automated load sharing between the connected power supplies and functions which monitor defects in the redundancy circuit or too high output currents, which could prevent redundancy, if one power supply fails.

The YR20.242 utilizes MOSFETs instead of diodes for the decoupling of the two input channels. This reduces the heat generation and the voltage drop between input and output. The redundancy module does not require an additional auxiliary voltage.

Due to the low power losses, the unit is very slender and only requires 32mm width on the DIN-rail. Large connection terminals allow for a safe and fast installation. The large international approval package makes this unit suitable for nearly every application.

SHORT-FORM DATA

Input voltage	DC 12-28V	±30%
Input voltage range	8.4-36.4Vdc	
Input current	2x 0-24A	ambient <+45°C**)
	2x 0-20A	ambient <+70°C**
Output current	0-24A	ambient <+45°C
	0-20A	ambient <+70°C
	max. 26A	in overload*) or
		short circuit mode
Input to output	60mV	input: 2x5A
voltage drop	110mV	input: 2x10A
Power losses	210mW	at no load
	0.6W	input: 2x5A
	2.0W	input: 2x10A
Temperature range	-40°C to +70°C	operational
Dimensions	32x124x117mm	WxHxD
Weight	250g, 0.56lb	

^{*)} Currents at voltages below 6V

ORDER NUMBERS

Redundancy Module YR20.242

Accessory

ZM11.SIDE

Side mount bracket

MARKINGS

UL 60950-1

^{**)} Sum of input current of both input max. 20A rsp. 24A

Y-Series

INDEX

		Page	Page
1.	Intended Use	3	15. RoHS, REACH and Other Fulfilled Standards 11
2.	Installation Requirements	3	16. Physical Dimensions and Weight
3.	Input and Output Characteristics	4	17. Accessories 13
4.	Power Losses	5	17.1. ZM11.SIDE - Side Mounting Bracket13
5.	Lifetime Expectancy and MTBF	5	18. Application Notes14
6.	Terminals and Wiring	6	18.1. Using Only One Input instead of Both
7.	Functional Diagram	6	Channels14
8.	Front Side and User Elements	7	18.2. Recommendations for Redundancy15
9.	EMC	8	18.3. Inductive and Capacitive Loads15
10	. Environment	9	18.4. Sidewards Installation Clearances15
11	. Protection Features	10	18.5. 1+1 Redundancy up to 10A16
12	. Safety Features	10	18.6. N+1 Redundancy, Example with 30A 16
	. Dielectric Strength		18.7. Mounting Orientations17
	Δnnrovals		

The information given in this document is correct to the best of our knowledge and experience at the time of publication. If not expressly agreed otherwise, this information does not represent a warranty in the legal sense of the word. As the state of our knowledge and experience is constantly changing, the information in this data sheet is subject to revision. We therefore kindly ask you to always use the latest issue of this document (available under www.pulspower.com). No part of this document may be reproduced or utilized in any form without our prior permission in writing.

TERMINOLOGY AND ABREVIATIONS

DC 24V A figure displayed with the AC or DC before the value represents a nominal voltage with

standard tolerances (usually ±15%) included.

E.g.: DC 12V describes a 12V battery disregarding whether it is full (13.7V) or flat (10V)

24Vdc A figure with the unit (Vdc) at the end is a momentary figure without any additional

tolerances included.

may A key word indicating flexibility of choice with no implied preference

shall A key word indicating a mandatory requirement

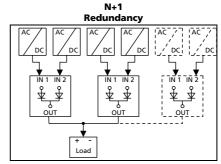
should A key word indicating flexibility of choice with a strongly preferred implementation

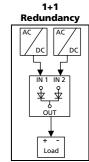
1+1 Redundancy Use of two identical power supplies in parallel to provide continued operation following most

failures in a single power supply. The two power supply outputs should be isolated from each other by utilizing diodes or other switching arrangements. E.g. two 10A power supplies are

needed to achieve a 10A redundant

system.


N+1 Redundancy Use of three or more identical power


supplies in parallel to provide

continued operation following most failures in a single power supply. All power supply outputs should be isolated from each other by utilizing diodes or other switching

arrangements.

E.g.: To achieve a 40A redundant system, five 10A power supplies are needed in a N+1 redundant system.

DIMENSION

Y-Series

12-28V, 20A, Dual Redundancy Module

1. INTENDED USE

This redundancy module is designed for installation in an enclosure and is intended for the general use such as in industrial control, office, communication, and instrumentation equipment.

This redundancy module can be used with any type of power supply as long as the maximum output current ratings are not exceeded. It is suitable for power supplies with constant current overload behavior as well as any kind of "Hiccup" overload behavior.

Do not use this redundancy module in equipment, where malfunction may cause severe personal injury or threaten human life.

2. Installation Requirements

This device may only be installed and put into operation by qualified personnel.

This device does not contain serviceable parts.

If damage or malfunction should occur during installation or operation, immediately turn power off and send unit to the factory for inspection.

Mount the unit on a DIN-rail so that the input terminals are located on the bottom and the output terminals on the top of the unit. For other mounting orientations see de-rating requirements of chapter 18.7 in this document.

This device is designed for convection cooling and does not require an external fan. Do not obstruct airflow and do not cover the ventilation grid (e.g. cable conduits) by more than 30%!

Keep the following installation clearances:

40mm on top,

20mm on the bottom.

5mm on the left and right sides are recommended when the device is loaded permanently with more than 50% of the rated output current. Increase the side clearance to 15mm in case the adjacent device is a heat source (e.g. another power supply). See chapter 18.4 for other allowed clearances when used with the PULS DIMENSION series in a 1+1 redundant configuration.

Use only power supplies with a negligible output ripple voltage in the low frequency range between 50Hz and 10kHz when used in marine applications according to the GL regulations.

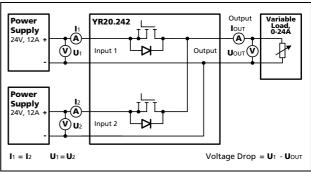
The input must be powered from a SELV source (according to IEC 60950-1), a PELV source (according to IEC 62477-1) or an Isolated Secondary Circuit (according to UL 508).

Do not ground or earth the positive output pole which could prevent redundancy in case of a ground failure. Ground the negative output pole when needed.

WARNING Risk of electrical shock, fire, personal injury or death.

- Turn power off before working on the device. Protect against inadvertent re-powering.
- Make sure that the wiring is correct by following all local and national codes.
- Do not open, modify or repair the unit.
- Use caution to prevent any foreign objects from entering the housing.
- Do not use in wet locations or in areas where moisture or condensation can be expected.
- Do not touch during power-on, and immediately after power-off. Hot surfaces may cause burns.

Y-Series


3. INPUT AND OUTPUT CHARACTERISTICS

Number of inputs	_	2	
Number of outputs	-	1	
Input voltage	nom.	DC 12-28V	±30%
Input voltage range	-	8.4-36.4Vdc	
Voltage drop, input to output	typ.	60mV	at 2x5A, 25°C, see Fig. 3-1
	typ.	110mV	at 2x10A, 25°C, see Fig. 3-1
	typ.	130mV	at 2x12A, 25°C, see Fig. 3-1
Input current	nom.	2x 0-24A 1)	continuous, ambient temperature < +45°C
	nom.	2x 0-20A 1)	continuous, ambient temperature < +70°C
	nom.	2x 32.5A 2)	for max. 5 seconds
	max.	2x 700A	for max. 1ms
Output current	nom.	24A	continuous, ambient temperature < +45°C
	nom.	20A	continuous, ambient temperature < +70°C
	nom.	32.5A ³⁾	for max. 5 seconds
	max.	26A	in overload /short-circuit (voltage < 6V). Ensure that the sum of input currents does not exceed this value.
Reverse current	max.	1mA	at 24V, per input, -40°C to +70°C
Reverse voltage	max.	40Vdc	voltage applied to the output, continuously allowed
Output capacitance	typ.	320µF	

- 1) Ensure that the sum of both input currents stays below 24A rsp. 20A.
- 2) Ensure that the sum of both input currents stays below 32.5A.
- 3) The average value (R.M.S. value) of the output current must not exceed the values of the continuous output current.

Fig. 3-1 Input to output voltage drop Voltage Drop, typ 60°C 150mV 125mV 100mV 75mV 50mV 25mV Input / Output Current 0 mVOutput: 10A 15A 20A 25A Input: 0 2x2.5A 2x5A 2x7.5A 2x10A 2x12.5A

Fig. 3-2 Test setup for voltage drop measurements

Y-Series

4. POWER LOSSES

		DC 12V	DC 24V	
Power losses	typ.	0.6W	0.6W	input: 2x5A, ambient temperature: 25°C
	typ.	2.0W	2.0W	input: 2x10A, ambient temperature: 25°C
Standby power losses	typ.	0.11W	0.21W	at no output current

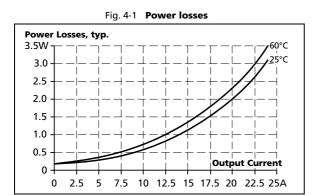


Fig. 4-2 Test setup for power loss measurements OUT Load, 0-24A Supply (A) (A) (V) U1 UOUT (V Outpu Input 1 Supply (A) $(V)_{U_2}$ $I_1 = I_2$ $U_1 = U_2$ Losses = $(\mathbf{U}_1 * \mathbf{I}_1 + \mathbf{U}_2 * \mathbf{I}_2) - \mathbf{U}_{OUT} * \mathbf{I}_{OUT}$

5. LIFETIME EXPECTANCY AND MTBF

The redundancy module has two input channels which are completely independent from each other. Each control circuit, auxiliary voltage source, or other circuitry in the module are designed separately for each input. The dual input redundancy module can be considered as two single redundancy modules combined together in one housing. The only common point is the circuit trace that ties the two separate circuits together at the output.

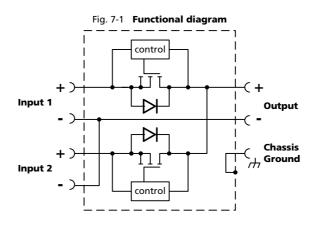
The MTBF figures below are for the entire dual input module. If the MTBF number of only one path is needed, simply double the value from the table.

Input / output current conditions	Input: 2x5A Output: 10A	Input: 2x10A Output: 20A	
Lifetime expectancy*)	553 000h *)	355 000h *)	at 24V and 40°C
	1 563 000h *)	1 003 000h *)	at 24V and 25°C
MTBF**) SN 29500, IEC 61709	10 050 000h	7 895 000h	at 24V and 40°C
	16 777 000h	13 403 000h	at 24V and 25°C
MTBF**) MIL HDBK 217F	2 030 000h	1 890 000h	Ground Fixed GF40 (24V and 40°C)
	2 801 000h	2 588 000h	Ground Fixed GF25 (24V and 25°C)
	441 000h	404 000h	Ground Benign GB40 (24V and 40°C)
	604 000h	548 000h	Ground Benign GB25 (24V and 25°C)

^{*)} The **Lifetime expectancy** shown in the table indicates the minimum operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors. Lifetime expectancy is specified in operational hours and is calculated according to the capacitor's manufacturer specification. The manufacturer of the electrolytic capacitors only guarantees a maximum life of up to 15 years (131 400h). Any number exceeding this value is a calculated theoretical lifetime which can be used to compare devices.

^{**)} MTBF stands for Mean Time Between Failure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product. The MTBF figure is a statistical representation of the likelihood of a device to fail. A MTBF figure of e.g. 1 000 000h means that statistically one unit will fail every 100 hours if 10 000 units are installed in the field. However, it can not be determined if the failed unit has been running for 50 000h or only for 100h.

Y-Series


6. TERMINALS AND WIRING

	Input and Output	
Туре	Screw termination, IP20 Finger safe construction.	
	Suitable for field installation.	
Solid wire	max. 6mm²	
Stranded wire	max. 4mm²	
American Wire Gauge	AWG 20-10	
Max. wire diameter	2.8mm (including ferrule)	
Wire stripping length	7mm / 0.275inch	
Screwdriver	3.5mm slotted or Pozidrive No 2	
Recommended tightening torque	0.8Nm, 7lb.in	

Instructions:

- a) Use appropriate copper cables that are designed for minimum operating temperatures of: 60°C for ambient up to 45°C and 75°C for ambient up to 60°C and 90°C for ambient up to 70°C minimum.
- b) Follow national installation codes and installation regulations!
- c) Ensure that all strands of a stranded wire enter the terminal connection!
- d) Screws of unused terminal compartments should be securely tightened.
- e) Ferrules are allowed.

7. FUNCTIONAL DIAGRAM

Y-Series

8. FRONT SIDE AND USER ELEMENTS

Fig. 8-1 Front side

- **A** Output Terminals (screw terminals)
- **B** Chassis Ground Terminal Connection of the chassis is optional and not required since the unit fulfils the requirements according to protection class III.
- **<u>C</u>** Input Terminals for Input 1 (screw terminals)
- **D** Input Terminals for Input 2 (screw terminals)

Y-Series

12-28V, 20A, Dual Redundancy Module

9. EMC

The redundancy module is suitable for applications in industrial environment as well as in residential, commercial and light industry environment without any restrictions.

EMC Immunity	According to generic standards: EN 61000-6-1 and EN 61000-6-2			
Electrostatic discharge	EN 61000-4-2	Contact discharge	8kV	Criterion A
		Air discharge	15kV	Criterion A
Electromagnetic RF field	EN 61000-4-3	80MHz-2.7GHz	20V/m	Criterion A
Fast transients (Burst)	EN 61000-4-4	Input lines	2kV	Criterion A
		Output lines	2kV	Criterion A
Surge voltage on input	EN 61000-4-5	+ → -	500V	Criterion A
lines		+/- → Chassis ground	1kV	Criterion A
Surge voltage on output	EN 61000-4-5	+ → -	500V	Criterion A
lines		+/- → Chassis ground	1kV	Criterion A
Conducted disturbance	EN 61000-4-6	0.15-80MHz	20V	Criterion A
Power-frequency magnetic field ¹⁾	EN 61000-4-8	50Hz	30A/m	Criterion A

Criterions:

A: Redundancy module shows normal operation behavior within the defined limits.

Notes:

1) A test is not applicable according to EN 61000-6-2, since the device does not contain components susceptible to magnetic fields, e.g. hall elements, electrodynamic microphones, etc.

EMC Emission	According to generic standards: EN 61000-6-3 and EN 61000-6-4		
Conducted emission input lines	IEC/CISPR 16-1-2, IEC/CISPR 16-2-1	limits for DC power ports according EN 61000-6-3 fulfilled ^{2) 3)}	
Conducted emission output lines	IEC/CISPR 16-1-2, IEC/CISPR 16-2-1	limits for DC power ports according EN 61000-6-3 fulfilled ^{2) 3)}	
Radiated emission	EN 55011, EN 55022	Class B 3)	

This device complies with FCC Part 15 rules.

Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Notes

- 2) For information only, not mandatory for EN 61000-6-3.
- 3) Provided, that power sources connected on the inputs fulfill the requirements too.

Switching frequency

The internal auxiliary supply is generated with a boost converter.

The switching frequency varies from 140kHz to 500kHz depending on the input voltage.

Y-Series

10. ENVIRONMENT

Operational temperature *)	-40°C to +70°C (-40°F to 158°F)		
Storage temperature	-40 to +85°C (-40°F to 185°F)	for storage and transportation	
Humidity **)	5 to 95% r.H.	IEC 60068-2-30	
Vibration sinusoidal***)	2-17.8Hz: ±1.6mm; 17.8-500Hz: 2g 2 hours / axis	IEC 60068-2-6	
Shock***)	30g 6ms, 20g 11ms 3 bumps / direction, 18 bumps in total	IEC 60068-2-27	
Altitude	0 to 2000m (0 to 6 560ft)	without any restrictions	
	2000 to 6000m (6 560 to 20 000ft)	reduce output power or ambient temperature, see Fig. 10-2	
Altitude de-rating	1.25A/1000m or 5°C/1000m	> 2000m (6500ft), see Fig. 10-2	
Over-voltage category	not applicable	The concept of the overvoltage category is used for equipment energized directly from the low voltage mains (IEC 60664-1 §4.3.3.2.1).	
Degree of pollution	2	EN 62477-1, not conductive	
LABS compatibility	The unit does not release any silicone or other LABS-critical substances and is suitable for use in paint shops.		

^{*)} Operational temperature is the same as the ambient temperature and is defined as the air temperature 2cm below the unit.

^{***)} Tested in combination with DIN-Rails according to EN 60715 with a height of 15mm and a thickness of 1.3mm and standard mounting orientation.

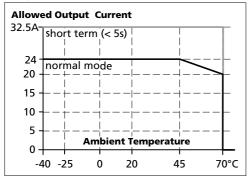
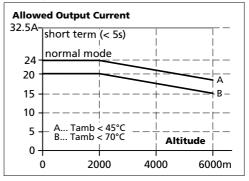



Fig. 10-2 Output current vs. altitude

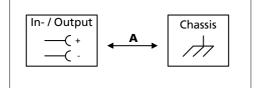
^{**)} Do not energize while condensation is present

Y-Series

11. PROTECTION FEATURES

Output over-current protection	not included	
Reverse input polarity protection	included	unit does not start when input voltage is reversed
Degree of protection	IP 20	EN/IEC 60529
Penetration protection	> 3.6mm	e.g. screws, small parts
Over-temperature protection	not included	
Input transient protection	included	see EMC section
Output transient protection	included	see EMC section
Internal input fuse	not included	

12. SAFETY FEATURES


Input / output separation	no galvanic separation	Mosfet between input and output
Safety level of output voltage	The output voltage is regarded to be SELV (EN 60950-1) or PELV (EN 60204-1, EN 62477-1, IEC 60364-4-41) if the input voltage fulfills the requirements for a SELV source or PELV source.	
Class of protection	III	PE (Protective Earth) or chassis connection not required
PE resistance	< 0.10hm	between housing and chassis-ground terminal

13. DIELECTRIC STRENGTH

The input and output voltages have the same reference, are floating and have no ohmic connection to ground. Type and factory tests are conducted by the manufacturer. Field tests may be conducted in the field using the appropriate test equipment which applies the voltage with a slow ramp (2s up and 2s down). Connect input/output terminals together before conducting the test.

When testing, set the cut-off current settings to the value in the table below.

Fig. 13-1 Dielectric strength

	^
60s	500Vac
5s	500Vac
5s	500Vac
Cut-off current setting	
	5s

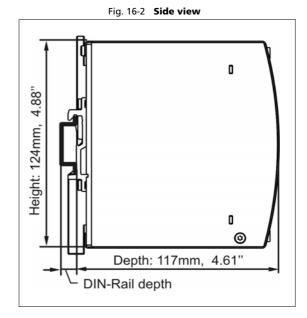
Y-Series

14. APPROVALS

EC Declaration of Conformity	(€	The CE mark indicates conformance with the - EMC directive and the - ATEX directive.
IEC 60950-1	IECEE CB SCHEME	CB Scheme, Information Technology Equipment
UL 508	C US LISTED IND. CONT. EQ.	Listed for use as Industrial Control Equipment; U.S.A. (UL 508) and Canada (C22.2 No. 107-1-01); E-File: E198865
UL 60950-1	c FL °us	Recognized for use as Information Technology Equipment, Level 5; U.S.A. (UL 60950-1) and Canada (C22.2 No. 60950); E-File: E137006
ANSI / ISA 12.12.01-2007 Class I Div 2, planned	© Sus	LISTED for use in Hazardous Location Class I Div 2 T4 Groups A,B,C,D systems; U.S.A. (ANSI / ISA 12.12.01-2007) and Canada (C22.2 No. 213-M1987)
ATEX EN 60079-0, EN 60079-7	II 3G Ex ec IIC T4 Gc	Suitable for use in Category 3 Zone 2 locations. Number of ATEX certificate: EPS 11 ATEX 1 312 X The redundancy module must be built-in in an IP54 enclosure.
IECEX IEC 60079-0, IEC 60079-7	IECEX Ex ec IIC T4 Gc	Suitable for use in Category 3 Zone 2 locations. Number of IECEx certificate: IECEx EPS 12.0032X
Marine, planned	GL	GL (Germanischer Lloyd) classified Environmental category: C, EMC1 Marine and offshore applications
EAC TR Registration	EAC	Registration for the Eurasian Customs Union market (Russia, Kazakhstan, Belarus)

15. ROHS, REACH AND OTHER FULFILLED STANDARDS

RoHS Directive	RoHS✔	Directive 2011/65/EU of the European Parliament and the Council of June 8 th , 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.
REACH Directive	REACH ✓	Directive 1907/2006/EU of the European Parliament and the Council of June 1 st , 2007 regarding the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)


Y-Series

16. PHYSICAL DIMENSIONS AND WEIGHT

Width	32mm 1.26"		
Height	124mm 4.88''		
Depth	117mm 4.61"		
	The DIN-rail height must be added to the unit depth to calculate the total required		
	installation depth.		
Weight	250g / 0.56lb		
DIN-Rail	Use 35mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm.		
Housing material	Body: Aluminium alloy		
	Cover: zinc-plated steel		
Installation clearances	See chapter 2		

3.2 25.5 | SOME STATE OF THE PROPERTY OF THE P

1.26

Y-Series

17. Accessories

17.1. ZM11.SIDE - SIDE MOUNTING BRACKET

This bracket is used to mount the YR20.242 redundancy module sideways with or without utilizing a DIN-Rail. The two aluminum brackets and the black plastic slider of the unit have to be detached, so that the steel brackets can be mounted.

For sideway DIN-rail mounting, the removed aluminum brackets and the black plastic slider need to be mounted on the steel bracket.

Fig. 17-1 Side mounting without DINrail brackets

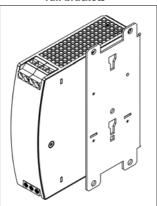


Fig. 17-2 Side mounting with DIN-rail brackets

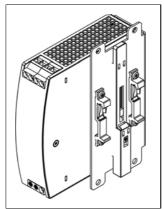
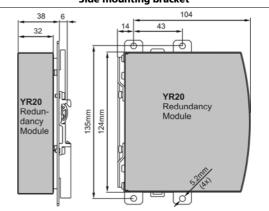



Fig. 17-3
Mounting Dimensions
Side mounting bracket

Y-Series

18. APPLICATION NOTES

18.1. Using Only One Input instead of Both Channels

Using only one input instead of both is allowed up to a nominal input current of 24A (at max. +45°C ambient temperature) or 20A (at max. +70°C ambient temperature).

However, it is always recommended to connect both input path in parallel for reduced power losses and voltage drop. In cases when this is not possible, the following values can be expected:

Voltage drop, input to output	typ.	80mV	at 1x10A, 25°C, see Fig. 18-1
	typ.	150mV	at 1x20A, 25°C, see Fig. 18-1
Power losses	typ.	0.75W	at 1x10A, 25°C, see Fig. 18-3
	typ.	3.0W	at 1x20A, 25°C, see Fig. 18-3
Standby power losses	typ.	0.07W	at 12V operation
	typ.	0.14W	at 24V operation

Fig. 18-1 Input to output voltage drop when only one input is used

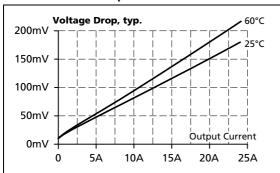


Fig. 18-3 Power losses when only one input is used

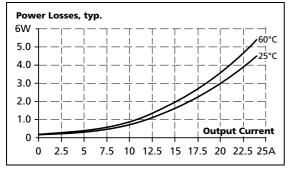


Fig. 18-2 Test setup for voltage drop measurements

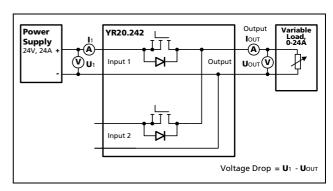
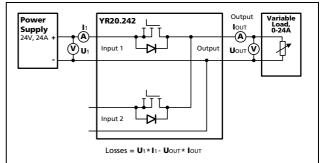



Fig. 18-4 Test setup for power loss measurements

Y-Series

18.2. RECOMMENDATIONS FOR REDUNDANCY

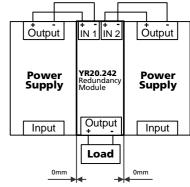
Recommendations for the configuration of redundant power systems:

- Use separate input fuses for each power supply.
- Use three-phase power supplies to gain additional safety if one phase fails.
- When single-phase power supplies are utilized connect them to different phases or mains circuits if possible.
- Set the power supply in "Parallel-Use" mode if this feature is available
- It is desirable to set the output voltages of all power supplies to the same value.

18.3. INDUCTIVE AND CAPACITIVE LOADS

The unit is designed to supply any kind of loads, including unlimited capacitive and inductive loads.

18.4. Sidewards Installation Clearances

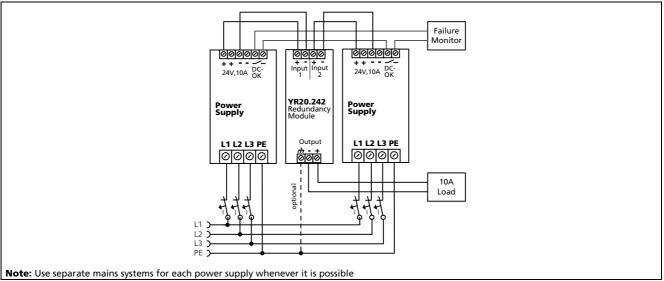

The minimum clearance recommendations are defined in chapter 2.

Normally, the following installation clearance are recommended: 40mm on top, 20mm on the bottom, 5mm on the left and right sides when the device is loaded permanently with more than 50% of the rated power. Increase this clearance to 15mm in case the adjacent device is a heat source (e.g. another power

supply).

The clearance between the power supplies and the redundancy module can be reduced to zero under the following conditions:

- 1+1 redundancy application with maximum 12A output current.
- The power supplies are from the PULS DIMENSION series.
- The redundancy module is placed between the two power supplies.
- The output voltage is set to the same level on both power supplies.



Y-Series

18.5. 1+1 REDUNDANCY UP TO 10A

1+1 Redundancy up to 10A requires two 10A power supplies and one YR20.242 redundancy module.

Fig. 18-5 Wiring diagram, 1+1 Redundancy, 10A output current

18.6. N+1 REDUNDANCY, EXAMPLE WITH 30A

N+1 Redundancy up to 30A requires four 10A power supplies and two YR20.242 redundancy modules.

Fig. 18-6 Wiring diagram, n+1 Redundancy, 30A output current Failure Monitor 000000 24V,10A DC-OK + + - - = 24V,10A DC-OK 24V,10A DC-24V,10A DC-**YR20.242** Redundancy Module **YR20.242** Redundancy Module Power Supply Power Supply Power Supply Power Supply Output L1 L2 L3 PE L1 L2 L3 PE L1 L2 L3 PE 0000 0000 00000 0000 30A **Note:** Use separate mains systems for each power supply whenever it is possible

Y-Series

18.7. MOUNTING ORIENTATIONS

Mounting orientations other than input terminals on the bottom and output on the top require a reduction in continuous output power or a limitation in the maximum allowed ambient temperature. The amount of reduction influences the lifetime expectancy of the power supply. Therefore, two different derating curves for continuous operation can be found below:

Curve A1 Recommended output current.

Curve A2 Max allowed output current (results in approximately half the lifetime expectancy of A1).

Fig. 18-7
Mounting
Orientation A
(Standard
orientation)

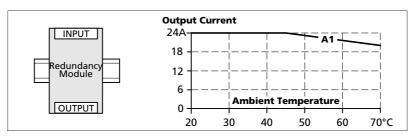


Fig. 18-8

Mounting

Orientation B

(Upside down)

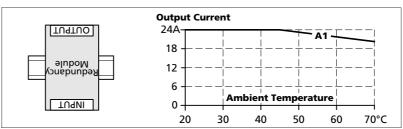


Fig. 18-9
Mounting
Orientation C
(Table-top
mounting)

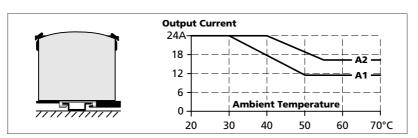


Fig. 18-10
Mounting
Orientation D
(Horizontal cw)

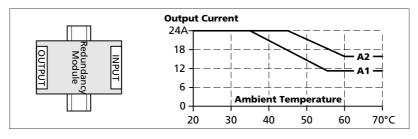
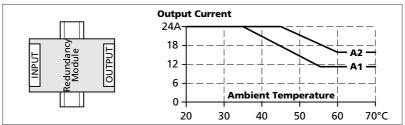



Fig. 18-11

Mounting

Orientation E

(Horizontal ccw)

